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1. Introduction. Computational linguistics studies the computat-
ional processes involved in language learning, production, and comprehen-
sion. Computational linguists believe that the essence of these processes
(in humans and machines) is a computational manipulation of informa-
tion. Computational psycholinguistics studies psychological aspects of hu-
man language (e.g., the time course of sentence comprehension) in terms
of such computational processes.

Natural language processing is the use of computers for processing nat-
ural language text or speech. Machine translation (the automatic transla-
tion of text or speech from one language to another) began with the very
earliest computers [Kay et al., 1994]. Natural language interfaces permit
computers to interact with humans using natural language, e.g., to query
databases. Coupled with speech recognition and speech synthesis, these
capabilities will become more important with the growing popularity of
portable computers that lack keyboards and large display screens. Other
applications include spell and grammar checking and document summa-
rization. Applications outside of natural language include compilers, which
translate source code into lower-level machine code, and computer vision
[Foo, 1974, Foo, 1982].

The notion of a grammar is central to most work in computational
linguistics and natural language processing. A grammar is a description
of a language; usually it identifies the sentences of the language and pro-
vides descriptions of them, e.g., by defining the phrases of a sentence, their
inter-relationships, and perhaps also aspects of their meanings. Parsing

is the process of recovering a sentence’s description from its words, while
generation is the process of translating a meaning or some other part of a
sentence’s description into a grammatical or well-formed sentence. Parsing
and generation are major research topics in their own right. Evidently,
human use of language involves some kind of parsing and generation pro-
cess, as do many natural language processing applications. For example, a
machine translation program may parse an input language sentence into a
(partial) representation of its meaning, and then generate an output lan-
guage sentence from that representation.

Although the intellectual roots of modern linguistics go back thousands
of years, by the 1950s there was considerable interest in applying the then
newly developing ideas about finite-state machines and other kinds of au-
tomata, both deterministic and stochastic, to natural language. Automata
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are Markov-like machines consisting of a set of states and a set of allowed
state-to-state transitions. An input sequence, selected from a finite input
alphabet, moves the machine from state to state along allowed transitions.
[Chomsky, 1957] pointed out clearly the inadequacies of finite-state ma-
chines for modelling English syntax. An effect of Chomsky’s observations,
perhaps unintended, was to discourage further research into probabilistic
and statistical methods in linguistics. In particular, stochastic grammars
were largely ignored. Instead, there was a shift away from simple automata,
both deterministic and stochastic, towards more complex non-stochastic
grammars, most notably “transformational” grammars. These grammars
involved two levels of analyses, a “deep structure” meant to capture more-
or-less simply the meaning of a sentence, and a “surface structure” which
reflects the actual way in which the sentence was constructed. The deep
structure might be a clause in the active voice, “Sandy saw Sam,” whereas
the surface structure might involve the more complex passive voice, “Sam
was seen by Sandy.”

Transformational grammars are computationally complex, and in the
1980s several linguists came to the conclusion that much simpler kinds
of grammars could describe most syntactic phenomena, developing Gen-
eralized Phrase-Structure Grammars [Gazdar et al., 1985] and Unification-
based Grammars [Kaplan and Bresnan, 1982, Pollard and Sag, 1987],
[Shieber, 1986]. These grammars generate surface structures directly; there
is no separate deep structure and therefore no transformations. These kinds
of grammars can provide very detailed syntactic and semantic analyses of
sentences, but as explained below, even today there are no comprehensive
grammars of this kind that fully accommodate English or any other natural
language.

Natural language processing using hand-crafted non-stochastic gram-
mars suffers from two major drawbacks. First, the syntactic coverage of-
fered by any available grammar is incomplete, reflecting both our lack of
understanding of even relatively frequently occuring syntactic constructions
and the organizational difficulty of manually constructing any artifact as
complex as a grammar of a natural language. Second, such grammars al-
most always permit a large number of spurious ambiguities, i.e., parses
which are permitted by the rules of syntax but have unusual or unlikely se-
mantic interpretations. For example, in the sentence I saw the boat with the

telescope, the prepositional phrase with the telescope is most easily inter-
preted as the instrument used in seeing, while in I saw the policeman with

the rifle, the prepositional phrase usually receives a different interpretation
in which the policeman has the rifle. Note that the corresponding alterna-
tive interpretation is marginally accessible for each of these sentences: in
the first sentence one can imagine that the telescope is on the boat, and in
the second, that the rifle (say, with a viewing scope) was used to view the
policeman.
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In effect, there is a dilemma of coverage. A grammar rich enough to
accommodate natural language, including rare and sometimes even “un-
grammatical” constructions, fails to distinguish natural from unnatural in-
terpretations. But a grammar sufficiently restricted so as to exclude what
is unnatural fails to accommodate the scope of real language. These obser-
vations lead, in the 1980’s, to a renewed interest in stochastic approaches to
natural language, particularly to speech. Stochastic finite-state automata
became the basis of speech recognition systems by out-performing the best
of the systems based on deterministic hand-crafted grammars. Largely in-
spired by the success of stochastic approaches in speech recognition, com-
putational linguists began applying them to other natural language pro-
cessing applications. Usually, the architecture of such a stochastic model
is specified manually (e.g., the possible states of a stochastic finite-state
automaton and the allowed transitions between them), while the model’s
parameters are estimated from a training corpus, i.e., a large representative
sample of sentences.

As explained in the body of this paper, stochastic approaches re-
place the binary distinctions (grammatical versus ungrammatical) of non-
stochastic approaches with probability distributions. This provides a way
of dealing with the two drawbacks of non-stochastic approaches. Ill-formed
alternatives can be characterized as extremely low probability rather than
ruled out as impossible, so even ungrammatical strings can be provided
with an interpretation. Similarly, a stochastic model of possible interpre-
tations of a sentence provides a method for distinguishing more plausible
interpretations from less plausible one.

The next section, §2, introduces formally various classes of grammars
and languages. Probabilistic grammars are introduced in §3, along with
the basic issues of parametric representation, inference, and computation.

2. Grammars and languages. The formal framework, whether used
in a transformational grammar, a generalized phrase-structure grammar, or
a more traditionally styled context-free grammar, is due to [Chomsky, 1957]
and his co-workers. In this section, we will present a brief introduction to
this framework. But for a thorough (and very readable) presentation we
highly recommend the book by [Hopcroft and Ullman, 1979].

If T is a finite set of symbols, let T ∗ be the set of all strings (i.e.,
finite sequences) of symbols of T , including the empty string, and let T+

be the set of all nonempty strings of symbols of T . A language is a subset
of T ∗. A rewrite grammar G is a quadruple G = (T,N, S,R), where T and
N are disjoint finite sets of symbols (called the terminal and non-terminal

symbols respectively), S ∈ N is a distinguished non-terminal called the
start symbol, and R is a finite set of productions. A production is a pair
(α, β) where α ∈ N+ and β ∈ (N ∪ T )∗; productions are usually written
α → β. Productions of the form α → ε, where ε is the empty string,
are called epsilon productions. In this paper we will restrict attention to
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grammars without epsilon productions, i.e., β ∈ (N∪T )+, as this simplifies
the mathematics considerably.

A rewrite grammar G defines a rewriting relation ⇒G ⊆ (N ∪ T )∗ ×
(N ∪ T )∗ over pairs of strings consisting of terminals and nonterminals as
follows: γαδ ⇒ γβδ iff α → β ∈ R and γ, δ ∈ (N ∪ T )∗ (the subscript G
is dropped when clear from the context). The reflexive, transitive closure
of ⇒ is denoted ⇒∗. Thus ⇒∗ is the rewriting relation using arbitrary
finite sequences of productions. (It is called “reflexive” because the identity
rewrite, α ⇒∗ α, is included). The language generated by G, denoted LG,
is the set of all strings w ∈ T+ such that S ⇒∗ w.

A terminal or nonterminal X ∈ N ∪ T is useless unless there are
γ, δ ∈ (N ∪ T )∗ and w ∈ T ∗ such that S ⇒∗ γXδ ⇒∗ w. A production
α → β ∈ R is useless unless there are γ, δ ∈ (N ∪ T )∗ and w ∈ T ∗ such
that S ⇒∗ γαδ ⇒ γβδ ⇒∗ w. Informally, useless symbols or productions
never appear in any sequence of productions rewriting the start symbol
S to any sequence of terminal symbols, and the language generated by a
grammar is not affected if useless symbols and productions are deleted from
the grammar.

Example 1. Let the grammar G1 = (T1, N1, S, R1), where T1 =
{grows, rice, wheat}, N1 = {S,NP,VP} and R1 = {S → NP VP,NP →
rice,NP → wheat,VP → grows}. Informally, the nonterminal S rewrites to
sentences or clauses, NP rewrites to noun phrases and VP rewrites to verb
phrases. Then LG1

= {rice grows, wheat grows}. G1 does not contain any
useless symbols or productions.
Rewrite grammars are traditionally classified by the shapes of their produc-
tions. G = (T,N, S,R) is a context-sensitive grammar iff for all productions
α → β ∈ R, |α| ≤ |β|, i.e., the right-hand side of each production is not
shorter than its left-hand side. G is a context-free grammar iff |α| = 1, i.e.,
the left-hand side of each production consists of a single non-terminal. G
is a left-linear grammar iff G is context-free and β (the right-hand side of
the production) is either of the form Aw or of the form w where A ∈ N
and w ∈ T ∗; in a right-linear grammar β always is of the form wA or w. A
right or left-linear grammar is called a regular grammar.

It is straight-forward to show that the classes of languages generated
by these classes of grammars stand in equality or subset relationships.
Specifically, the class of languages generated by right-linear grammars is the
same as the class generated by left-linear grammars; this class is called the
regular languages, and is a strict subset of the class of languages generated
by context-free grammars, which is a strict subset of the class of languages
generated by context-sensitive grammars, which in turn is a strict subset
of the class of languages generated by rewrite grammars.

The computational complexity of deciding whether a string is gener-
ated by a rewrite grammar is determined by the class that the grammar
belongs to. Specifically, the recognition problem for grammar G takes a
string w ∈ T+ as input and returns true iff w ∈ LG. Let G be a class of
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grammars. The universal recognition problem for G takes as input a string
w ∈ T+ and a grammar G ∈ G and returns true iff w ∈ LG.

There are rewriting grammars that generate languages that are recur-

sively enumerable but not recursive. In essence, a languageLG is recursively
enumerable if there exists an algorithm that is guaranteed to halt and emit
true whenever w ∈ LG, and may halt and emit not true, or may not

halt, whenever w 6∈ LG. On the other hand, a language is recursive if
there exists an algorithm that always halts, and emits true or not true

depending on whether w ∈ LG or w 6∈ LG, respectively.1 Obviously, the
set of recursive languages is a subset of the set of recursively enumerable
languages. The recognition problem for a language that is recursively enu-
merable but not recursive is said to be undecidable. Since such languages
do exist, generated by rewrite grammars, the universal recognition problem
for rewrite grammars is undecidable.

The universal recognition problem for context-sensitive grammars is

decidable, and furthermore is in PSPACE (space polynomial in the size of
G and w), but there are context-sensitive grammars for which the recog-
nition problem is PSPACE-complete [Garey and Johnson, 1979], so the
universal recognition problem for context-sensitive grammars is PSPACE-
complete also. Since NP⊆PSPACE, we should not expect to find a poly-
nomial-time recognition algorithm for arbitrary context-sensitive gram-
mars. The universal recognition problem for context-free grammars is de-
cidable in time polynomial in the size of w and linear in the size of G; as far
as we are aware a tight upper bound is not known. Finally, the universal
recognition problem for regular grammars is decidable in time linear in w
and G.

It turns out that context-sensitive grammars (where a production
rewrites more than one nonterminal) have not had many applications in
natural language processing, so from here on we will concentrate on context-
free grammars, where all productions take the form A → β, where A ∈ N
and β ∈ (N ∪ T )+.

An appealing property of grammars with productions in this form is
that they induce tree structures on the strings that they generate. And,
as we shall see shortly (§3), this is the basis for bringing in probability
distributions and the theory of inference. We say that the context-free
grammar G = (T,N, S,R) generates the labelled, ordered tree ψ iff the
root node of ψ is labelled S, and for each node n in ψ, either n has no
children and its label is a member of T (i.e., it is labelled with a terminal)
or else there is a production A→ β ∈ R where the label of n is A and the
left-to-right sequence of labels of n’s immediate children is β. It is straight
forward to show that w is in LG iff G generates a tree ψ whose yield (i.e.,
the left-to-right sequence of terminal symbols labelling ψ’s leaf nodes) is

1A rigorous definition requires a proper introduction to Turing machines. Again, we
recommend [Hopcroft and Ullman, 1979].
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w; ψ is called a parse tree of w (with respect to G). In what follows, we
define ΨG to be the set of parse trees generated by G, and Y(·) to be the
function that maps trees to their yields.

Example 1 (continued). The grammar G1 defined above generates
the following two trees, ψ1 and ψ2.

S

NP VP

rice grows

S

NP VP

wheat grows

ψ2 =ψ1 =

In this example, Y(ψ1) = rice grows and Y(ψ2) = wheat grows

A string of terminals w is called ambiguous iff w has two or more parse trees.
Linguistically, each parse tree of an ambiguous string usually corresponds
to a distinct interpretation.

Example 2. Consider G2 = (T2, N2, S, R2), where T2 = {I, saw,
the,man,with, telescope}, N2 = {S,NP,N,Det,VP,V,PP,P} and R2 =
{S → NPVP,NP → I,NP → Det N,Det → the,NP → NP PP,N →
man,N → telescope,VP → V NP,VP → VP PP,PP → P NP,V → saw,
P → with}. Informally, N rewrites to nouns, Det to determiners, V to
verbs, P to prepositions and PP to prepositional phrases. It is easy to
check that the two trees ψ3 and ψ4 with the yields Y(ψ3) = Y(ψ4) =
I saw the man with the telescope are both generated by G2. Linguisti-
cally, these two parse trees represent two different syntactic analyses of
the sentence. The first analysis corresponds to the interpretation where
the seeing is by means of a telescope, while the second corresponds to the
interpretation where the man has a telescope.

the telescope

Det N

NP

with

P

PP

manthe

Det N

NP

saw

V

VP

VP

I

NP

S
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the telescope

Det N

NP

with

P

PP

manthesawI

NP

NDet

NPV

VPNP

S

There is a close relationship between linear grammars and finite-state
machines. A finite-state machine is a kind of automaton that makes
state-to-state transitions driven by letters from an input alphabet (see
[Hopcroft and Ullman, 1979]) for details). Each finite-state machine has
a corresponding right-linear grammar which has the property that the set
of strings accepted by the machine is the same as the set of strings gener-
ated by the grammar (modulo an endmarker, as discussed below), and the
nonterminals of this grammar are exactly the set of states of the machine.
Moreover, there is an isomorphism between accepting computations of the
machine and parse trees generated by this grammar: for each sequence of
states that the machine transitions through in an accepting computation
there is a parse tree of the corresponding grammar containing exactly the
same sequence of states (the example below clarifies this).

The grammar GM = (T,N, S,R) that corresponds to a finite-state
machineM is one where the nonterminal symbolsN are the states ofM , the
start symbol S is the start state of M , and the terminal symbols T are the
input symbols to M together with a new symbol ‘$’, called the endmarker,
that does not appear in the transition labels of M . The productions R
of GM come in two kinds. R can contain productions A → bB, where
A,B ∈ N and b ∈ T , iff there is a transition in M from state A to state
B on input symbol b. R contains the production A → $ iff A is a final
state in M . Informally, M accepts a string w ∈ T ∗ iff w is the sequence
of inputs along a path from M ’s start state to some final state. It is easy
to show that GM generates the string w$ iff M accepts the string w. (If
we permitted epsilon productions then it would not be necessary to use an
endmarker; R would contain a production A → ε, where ε is the empty
string, iff A is a final state in M).

Example 3. Consider the right-linear grammar G3 = (T3, N3, S, R3),
where T3 = {a, b, $}, N3 = {S,A} and R3 = {S → b, S → a S, S →
b A,A → a A,A → $}. G3 corresponds to the finite-state machine depicted
below, where the ‘>’ attached to the state labelled S indicates it is the
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start state, and the double circle indicates that the state labelled A is a
final state. The parse tree for ‘aaba$’ with respect to G3 translates im-
mediately into the sequence of states that the machine transitions through
when accepting ‘aaba’.

S A

b

a a

a S

a S

b A

a A

S

$

As remarked earlier, context-sensitive and unrestricted rewrite gram-
mars do not seem to be useful in many natural language processing appli-
cations. On the other hand, the notation of context-free grammars is not
ideally suited to formulating natural language grammars. Furthermore, it is
possible to show that some natural languages are not context-free languages
[Culy, 1985, Shieber, 1985]. These two factors have led to the development
of a variety of different kinds of grammars. Many of these can be described
as annotated phrase structure grammars, which are extensions of context-
free grammars in which the set of nonterminals N is very large, possibly in-
finite, and N and R possess a linguistically motivated structure. In Gener-
alized Phrase Structure Grammars [Gazdar et al., 1985]N is finite, so these
grammars always generate context-free languages, but in unification gram-
mars such as Lexical-Functional Grammar [Kaplan and Bresnan, 1982] or
Head-driven Phrase Structure Grammar [Pollard and Sag, 1987] N is infi-
nite and the languages such grammars generate need not be context-free
or even recursive.

Example 4. Let G4 = (T4, N4, S, R4) where T4 = {a, b}, N4 = {S} ∪
{A,B}+ (i.e., N4 consists of S and nonempty strings over the alphabet A,B)
and R4 = {S → αα : α ∈ {A,B}+} ∪ {A → a,B → b} ∪ {Aα→ aα,Bα→
bα : α ∈ {A,B}+}. G4 generates the language {ww : w ∈ {a, b}+}, which
is not a context-free language. A parse tree for aabaab is shown below.

AAB

a AB

a B

b

AAB

a AB

a B

b

S
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3. Probability and statistics. Obviously broad coverage is desir-
able—natural language is rich and diverse, and not easily held to a small
set of rules. But it is hard to achieve broad coverage without massive
ambiguity (a sentence may have tens of thousands of parses), and this
of course complicates applications like language interpretation, language
translation, and speech recognition. This is the dilemma of coverage that
we referred to earlier, and it sets up a compelling role for probabilistic and
statistical methods.

We will review the main probabilistic grammars and their associated
theories of inference. We begin in §3.1 with probabilistic regular gram-
mars, also known as hidden Markov models (HMM), which are the foun-
dation of modern speech recognition systems. In §3.2 we discuss proba-
bilistic context-free grammars, which turn out to be essentially the same
thing as branching processes. We review the estimation problem, the
computation problem, and the role of criticality. Finally, in §3.3, we
take a more general approach to placing probabilities on grammars, which
leads to Gibbs distributions, a role for Besag’s pseudolikelihood method

[Besag, 1974, Besag, 1975], various computational issues, and, all in all, an
active area of research in computational linguistics.

3.1. Hidden Markov models and regular grammars. Recall that
a right-linear grammar G = (T,N, S,R) corresponding to a finite-state
machine is characterized by rewrite rules of the form A → bB or A → $,
where A,B ∈ N , b ∈ T , and $ ∈ T is a special terminal that we call
an endmarker. The connection with Hidden Markov Models (HMM’s) is
transparent: N defines the states, R defines the allowed transitions (A can
go to B if there exists a production of the form A → bB), and the string
of terminals defines the “observation.” The process is “hidden” since, in
general, the observations do not uniquely define the sequence of states.

In general, it is convenient to work with a “normal form” for right-
linear grammars: all rules are either of the form A→ bB or A→ b, where
A,B ∈ N and b ∈ T . It is easy to show that every right-linear grammar
has an equivalent normal form in the sense that the two grammars produce
the same language. Essentially nothing is lost, and we will usually work
with a normal form.

3.1.1. Probabilities. Assume that R has no useless symbols or pro-
ductions. Then the grammar G can be made into a probabilistic grammar
by assigning to each nonterminal A ∈ N a probability distribution p over
productions of the form A→ α ∈ R: for every A ∈ N

∑

α∈(N∪T )+

s.t. (A→α)∈R

p(A→ α) = 1 .(1)

Recall that ΨG is the set of parse trees generated by G (see §2). If G is
linear, then ψ ∈ ΨG is characterized by a sequence of productions, starting
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from S. It is, then, straightforward to use p to define a probability P on
ΨG: just take P (ψ) (for ψ ∈ ΨG) to be the product of the associated
production probabilities.

Example 5. Consider the right-linear grammar G5 = (T5, N5, S, R5),
with T5 = {a, b}, N5 = {S,A} and the productions (R5) and production
probabilities (p):

S → a S p = .80
S → b S p = .01
S → b A p = .19
A → b A p = .90
A → b p = .10 .

The language is the set of strings ending with a sequence of at least two
b’s. The grammar is ambiguous: in general, a sequence of terminal states
does not uniquely identify a sequence of productions. The sentence aabbbb

has three parses (determined by the placement of the production S → b A),
but the most likely parse, by far, is S → a S, S → a S, S → b A, A → b A,
A → b A, A → b (P = .8 · .8 · .19 · .9 · .1), which has a posterior probability
of nearly .99. The corresponding parse tree is shown below.

S

a S

a S

b A

b A

Ab

b

S A

b

a, b b

b

F

An equivalent formulation is through the associated three-state (S,A,
and F) two-output (a and b) HMM also shown above: the transition prob-
ability matrix is





.81 .19 .00

.00 .90 .10

.00 .00 1.00





where the first row and column represent S, the next represent A, and the
last represent F; and the output probabilities are based on state-to-state
pairs,
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(S, S) →

{

a prob = 80/81

b prob = 1/81

(S,A) →

{

a prob = 0

b prob = 1

(A,F) →

{

a prob = 0

b prob = 1 .

3.1.2. Inference. The problem is to estimate the transition proba-
bilities, p(·), either from parsed data (examples from ΨG) or just from
sentences (examples from LG). Consider first the case of parsed data (“su-
pervised learning”), and let ψ1, ψ2, . . . , ψn ∈ Ψ be a sequence taken iid
according to P . If f(A → α;ψ) is the counting function, counting the
number of times the transition A→ α ∈ R occurs in ψ, then the likelihood
function is

L = L(p;ψ1, . . . , ψn) =
n

∏

i=1

∏

A→α∈R

p(A→ α)f(A→α;ψi) .(2)

The maximum likelihood estimate is, sensibly, the relative frequency esti-
mator:

p̂(A→ α) =

∑n
i=1 f(A → α;ψi)

∑n
i=1

∑

β s.t. A→β∈R f(A→ β;ψi)
.(3)

If a nonterminal A does not appear in the sample, then the numerator
and denominator are zero, and p̂(A → α), α ∈ (N ∪ T )+, can be assigned
arbitrarily, provided it is consistent with (1).

The problem of estimating p from sentences (“unsupervised learning”)
is more interesting, and more important for applications. Recall that Y(ψ)
is the yield of ψ, i.e. the sequence of terminals in ψ. Given a sentence w ∈
T+, let Ψw be the set of parses which yield w: Ψw = {ψ ∈ Ψ : Y(ψ) = w}.
The likelihood of a sentence w ∈ T+ is the sum of the likelihoods of its
possible parses:

L(p;w) =
∑

ψ∈Ψw

P (ψ) =
∑

ψ∈Ψw

∏

A→α∈R

p(A→ α)f(A→α;ψ) .

Imagine now a sequence ψ1, . . . , ψn, iid according to P , for which only the
corresponding yields, wi = Y(ψi), 1 ≤ i ≤ n, are observed. The likelihood
function is

L = L(p;w1, . . . , wn) =

n
∏

i=1

∑

ψ∈Ψwi

∏

A→α∈R

p(A→ α)f(A→α;ψi) .(4)
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To get the maximum likelihood equation, take logarithms, introduce La-
grange multipliers to enforce (1), and set the derivative with respect to
p(A→ α) to zero:

λA +
1

p̂(A→α)

n
∑

i=1

∑

ψ∈Ψwi

f(A→α;ψ)
∏

B→β∈R

p̂(B→β)f(B→β;ψ)

∑

ψ∈Ψwi

∏

B→β∈R

p̂(B→β)f(B→β;ψ)
= 0 .(5)

Introduce Ep[·], meaning expectation under the probability on P induced
by p, and solve for p̂(A → α):

p̂(A→ α) =

∑n
i=1Ep̂[f(A→ α;ψ)|ψ ∈ Ψwi

]
∑

A→β∈R

∑n
i=1Ep̂[f(A→ β;ψ)|ψ ∈ Ψwi

]
.(6)

We can’t solve, directly, for p̂, but (6) suggests an iterative approach
[Baum, 1972]: start with an arbitrary p̂0 (but positive on R). Given p̂t,
t = 1, 2, . . . , define p̂t+1 by using p̂t in the right hand side of (6):

p̂t+1(A → α) =

∑n

i=1Ep̂t
[f(A→ α;ψ)|ψ ∈ Ψwi

]
∑

A→β∈R

∑n

i=1Ep̂t
[f(A → β;ψ)|ψ ∈ Ψwi

]
.(7)

Evidently, p̂t = p̂t+1 if and only if we have found a solution to the likeli-
hood equation, ∂

∂p̂(A→α)L = 0, ∀A → α ∈ R. What’s more, as shown by

[Baum, 1972], it turns out that L(p̂t+1;w1, . . . , wn) ≥ L(p̂t;w1, . . . , wn),
and the procedure finds a local maximum of the likelihood. It turns out,
as well, that (7) is just an instance of the EM algorithm, which of course
is more general and was discovered later by [Dempster et al., 1977].

Needless to say, nothing can be done with this unless we can actu-
ally evaluate, in a computationally feasible way, expressions like Ep̂[f(A→
α;ψ)|ψ ∈ Ψw]. This is one of several closely related computational prob-
lems that are part of the mechanics of working with grammars.

3.1.3. Computation. A sentence w ∈ T+ is parsed by finding a se-
quence of productions A → bB ∈ R which yield w. Depending on the
grammar, this corresponds more or less to an interpretation of w. Often,
there are many parses and we say that w is ambiguous. In such cases, if
there is a probability p on R then there is a probability P on Ψ, and a
reasonably compelling choice of parse is the most likely parse:

arg max
ψ∈Ψw

P (ψ) .(8)

This is the maximum a posteriori (MAP) estimate of ψ—obviously it min-
imizes the probability of error under the distribution P .

What is the probability of w? How are its parses computed? How is
the most likely parse computed? These computational issues turn out to be
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more-or-less the same as the issue of computing Ep̂[f(A → α;ψ)|ψ ∈ Ψw]
that came up in our discussion of inference. The basic structure and cost
of the computational algorithm is the same for each of the four problems—
compute the probability of w, compute the set of parses, compute the
best parse, compute Ep̂. For regular grammars, there is a simple dynamic
programming solution to each of these problems, and in each case the
complexity is of the order n · |R|, where n is the length of w, and |R| is the
number of productions in G.

Consider the representative problem of producing the most likely
parse, (8). Let w = (b1, . . . , bn) ∈ Tn. There are n − 1 productions of
the form Ak → bk+1 Ak+1 for k = 0, . . . , n − 2, with A0 = S, followed by
a single terminating production An−1 → bn. The most likely sequence of
productions can be computed by a dynamic-programming type iteration:
for every A ∈ N initialize with

A1(A) = S

V1(A) = p(S → b1A) .

Then, given Ak(A) and Vk(A), for A ∈ N and k = 1, 2, . . . , n− 2, compute
Ak+1(A) and Vk+1(A) from

Ak+1(A) = arg max
B∈N

p(B → bk+1A)Vk(B)

Vk+1(A) = p(Ak+1(A) → bk+1A)Vk(Ak+1(A)) .

Finally, let

An = arg max
B∈N

p(B → bn)Vn−1(B).

Consider the most likely sequence of productions from S at “time 0” to
A at “time k,” given b1, . . . , bk, k = 1, . . . , n−1. Ak(A) is the state at time
k − 1 along this sequence, and Vk(A) is the likelihood of this sequence.

Therefore, Ân−1
def
= An is the state at time n − 1 associated with the

most likely parse, and working backwards, the best state sequence overall
is Â0, Â1, . . . , Ân−1, where

Âk−1 = Ak(Âk), k = n− 1, n− 2, . . . , 1 .

There can be ties when more than one sequence achieves the optimum.
In fact, the procedure generalizes easily to produce the best l parses, for
any l > 1. Another modification produces all parses, while still another
computes expectations Ep of the kind that appear in the EM iteration (7)
or probabilities such as P{Y(ψ) = w} (these last two are, essentially, just
a matter of replacing argmax by summation).
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3.1.4. Speech recognition. An outstanding application of proba-
bilistic regular grammars is to speech recognition. The approach was first
proposed in the 1970’s (see [Jelinek, 1997] for a survey), and has since be-
come the dominant technology. Modern systems achieve high accuracy in
multi-user continuous-speech applications. Many tricks of representation
and computation are behind the successful systems, but the basic technol-
ogy is nevertheless that of probabilistic regular grammars trained via EM
and equipped with a dynamic programming computational engine. We
will say something here, briefly and informally, about how these systems
are crafted.

So far in our examples T has generally represented a vocabulary of
words, but it is not words themselves that are observable in a speech recog-
nition task. Instead, the acoustic signal is observable, and a time-localized
discrete representation of this signal makes up the vocabulary T . A typical
approach is to start with a spectral representation of progressive, overlap-
ping windows, and to summarize this representation in terms of a relatively
small number, perhaps 200, of possible values for each window. One way
to do this is with a clustering method such as vector quantization. This
ensemble of values then constitutes the terminal set T .

The state space, N , and the transition rules, R, are built from a hierar-
chy of models, for phonemes (which correspond to letters in speech), words,
and grammars. A phoneme model might have, for example, three states
representing the beginning, middle, and end of a phoneme’s pronunciation,
and transitions that allow, for example, remaining in the middle state as a
way of modeling variable duration. The state space, N , is small—maybe
three states for each of thirty or forty phonemes—making a hundred or
so states. This becomes a regular grammar by associating the transitions
with elements of T , representing the quantized acoustic features. Of course
a realistic system must accommodate an enormous variability in the acous-
tic signal, even for a single speaker, and this is why probabilities are so
important.

Words are modeled similarly, as a set of phonemes with a variety of al-
lowed transition sequences representing a variety of pronunciations choices.
These representations can now be expanded into basic units of phoneme
pronunciation, by substituting phoneme models for phonemes. Although
the transition matrix is conveniently organized by this hierarchical struc-
ture, the state space is now quite large: the number of words in the system’s
vocabulary (say 5,000) times the number of states in the phoneme models
(say 150). In fact many systems model the effects of context on articulation
(e.g. co-articulation), often by introducing states that represent triplets of
phonemes (“triphones”), which can further increase the size of N , possibly
dramatically.

The sequence of words uttered in continuous speech is highly con-
strained by syntactic and semantic conventions. These further constraints,
which amount to a grammar on words, constitute a final level in the hi-
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erarchy. An obvious candidate model would be a regular grammar, with
N made up of syntactically meaningful parts of speech (verb, noun, noun
phrase, article, and so on). But implementations generally rely on the much
simpler and less structured trigram. The set of states is the set of ordered
word pairs, and the transitions are a priori only limited by noting that the
second word at one unit of time must be the same as the first word at the
next. Obviously, the trigram model is of no utility by itself; once again
probabilities play an essential role in meaningfully restricting the coverage.

Trigrams have an enormous effective state space, which is made all
the larger by expanding the words themselves in terms of word models.
Of course the actual number of possible, or at least reasonable, transitions
out of a state in the resulting (expanded) grammar is not so large. This
fact, together with a host of computational and representational tricks and
compromises, renders the dynamic programming computation feasible, so
that training can be carried out in a matter of minutes or hours, and
recognition can be performed at real time, all on a single user’s PC.

3.2. Branching processes and context-free grammars. Despite
the successes of regular grammars in speech recognition, the problems of
language understanding and translation are generally better addressed with
the more structured and more powerful context-free grammars. Following
our development of probabilistic regular grammars in the previous section,
we will address here the inter-related issues of fitting context-free gram-
mars with probability distributions, estimating the parameters of these
distributions, and computing various functionals of these distributions.

The context-free grammars G = (T,N, S,R) have rules of the form
A → α, α ∈ (N ∪ T )+, as discussed previously in §2. There is again a
normal form, known as the Chomsky normal form, which is particularly
convenient when developing probabilistic versions. Specifically, one can
always find a context-free grammar G′, with all productions of the form
A→ BC orA→ a, A,B,C,∈ N, a ∈ T , which produces the same language
as G: LG′ = LG. Henceforth, we will assume that context-free grammars
are in the Chomsky normal form.

3.2.1. Probabilities. The goal is to put a probability distribution
on the set of parse trees generated by a context-free grammar in Chomsky
normal form. Ideally, the distribution will have a convenient parametric
form, that allows for efficient inference and computation.

Recall from §2 that context-free grammars generate labeled, ordered
trees. Given sets of nonterminals N and terminals T , let Ψ be the set of
finite trees with:

(a) root node labeled S;
(b) leaf nodes labeled with elements of T ;
(c) interior nodes labeled with elements of N ;
(d) every nonterminal (interior) node having either two children la-

beled with nonterminals or one child labeled with a terminal.
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Every ψ ∈ Ψ defines a sentence w ∈ T+: read the labels off of the terminal
nodes of ψ from left to right. Consistent with the notation of §3.1, we will
write Y(ψ) = w. Conversely, every sentence w ∈ T+ defines a subset of
Ψ, which we denote by Ψw, consisting of all ψ with yield w (Y(ψ) = w).
A context-free grammar G defines a subset of Ψ, ΨG, whose collection of
yields is the language, LG, of G. We seek a probability distribution P on
Ψ which concentrates on ΨG.

The time-honored approach to probabilistic context-free grammars is
through the production probabilities p : R → [0, 1], with

∑

α∈N2
∪T

s.t. (A→α)∈R

p(A→ α) = 1 .(9)

Following the development in §3.1, we introduce a counting function f(A→
α;ψ), which counts the number of instances of the rule A → α in the tree
ψ, i.e. the number of nonterminal nodes A whose daughter nodes define,
left-to-right, the string α. Through f , p induces a probability P on Ψ:

P (ψ) =
∏

(A→α)∈R

p(A→ α)f(A→α;ψ) .(10)

It is clear enough that P concentrates on ΨG, and we shall see shortly that
this parameterization, in terms of products of probabilities p, is particularly
workable and convenient. The pair, G and P , is known as a probabilistic
context-free grammar, or PCFG for short.

Branching Processes and Criticality. Notice the connection to
branching processes [Harris, 1963]: Starting at S, use R, and the associ-
ated probabilities p(·), to expand nodes into daughter nodes until all leaf
nodes are labeled with terminals (elements of T ). Since branching pro-
cesses display critical behavior, whereby they may or may not terminate
with probability one, we should ask ourselves whether p truly defines a
probability on ΨG—bearing in mind that Ψ includes only finite trees. Ev-
idently, for p to induce a probability on ΨG (P (ΨG) = 1), the associated
branching process must terminate with probability one. This may not hap-
pen, as is most simply illustrated by a bare-boned example:

Example 6. G6 = (T6, N6, S, R6), T6 = {a}, N6 = {S}, and R6

includes only

S → S S
S → a .

Let p(S → S S) = q and p(S → a) = 1 − q, and let Sh be the total
probability of all trees with depth less than or equal to h. Then S2 = 1− q
(corresponding to S → a) and S3 = (1 − q) + q(1 − q)2 (corresponding to
S → a or S → S S followed by S → a, S → a). In general, Sh+1 = 1−q+qS2

h,
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which is nonincreasing in q and converges to min(1, 1−q
q

) as q ↑ 1. Hence

P (ΨG) = 1 if and only if q ≤ .5.
More generally, it is not difficult to characterize production probabili-

ties that put full mass on finite trees (so that P (ΨG) = 1), see for example
[Grenander, 1976] or [Harris, 1963]. But the issue is largely irrelevant, since
maximum likelihood estimated probabilities always have this property, as
we shall see shortly.

3.2.2. Inference. As with probabilistic regular grammars, the pro-
duction probabilities of a context-free grammar, which amount to a param-
eterization of the distribution P on ΨG, can be estimated from examples.
In one scenario, we have access to a sequence ψ1, . . . , ψn from ΨG under P .
This is “supervised learning,” in the sense that sentences come equipped
with parses. More interesting is the problem of “unsupervised learning,”
wherein we observe only the yields, Y(ψ1), . . . ,Y(ψn).

In either case, the treatment of maximum likelihood estimation is es-
sentially identical to the treatment for regular grammars. In particular,
the likelihood for fully observed data is again (2), and the maximum like-
lihood estimator is again the relative frequency estimator (3). And, in the
unsupervised case, the likelihood is again (4) and this leads to the same
EM-type iteration given in (7).

Criticality. We remarked earlier that the issue is largely irrelevant.
This is because estimated probabilities p̂ are always proper probabilities:
P̂ (Ψ) = 1 whenever P̂ is induced by p̂ computed from (3) or any iteration
of (7) [Chi and Geman, 1998].

3.2.3. Computation. There are four basic computations: find the
probability of a sentence w ∈ T+, find a ψ ∈ Ψ (or find all ψ ∈ Ψ)
satisfying Y(ψ) = w (“parsing”); find

arg max
ψ∈Ψ s.t.
Y(ψ)=w

P (ψ)

(“maximum a posteriori” or “optimal” parsing); compute expectations
of the form Ep̂t

[f(A → α;ψ)|ψ ∈ Ψw] that arise in iterative estima-
tion schemes like (7). The four computations turn out to be more-or-
less the same, as was the case for regular grammars (§3.1.3), and there
is a common dynamic-programming-like solution [Lari and Young, 1990,
Lari and Young, 1991].

We illustrate with the problem of finding the probability of a string
(sentence) w, under a grammar G, and under a probability distribution
P concentrating on ΨG. For PCFGs, the dynamic-programming algo-
rithm involves a recursion over substrings of the string w to be parsed.
If w = w1 . . . wm is the string to be parsed, then let wi,j = wi . . . wj be
the substring consisting of terminals i through j, with the convention that
wi,i = wi. The dynamic-programming algorithm works from smaller to
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larger substrings wi,j , calculating the probability that A ⇒? wi,j for each
nonterminal A ∈ N . Because a substring of length 1 can only be gener-
ated by a unary production of the form A → x, for each i = 1, . . . ,m,
P (A ⇒? wi,i) = p(A → wi). Now consider a substring wi,j of length 2
or greater. Consider any derivation A ⇒? wi,j . The first production used
must be a binary production of the form A → BC, with A,B,C ∈ N .
That is, there must be a k between i and j such that B ⇒∗ wi,k and
C ⇒∗ wk+1,j . Thus the dynamic programming step involves iterating from
smaller to larger substrings wi,j , 1 ≤ i, j ≤ m, calculating:

P (A⇒?wi,j) =
∑

B,C∈N

s.t.A→B C∈R

p(A→B C)
∑

k=i,j−1

P (B⇒?wi,k)P (C⇒?wk+1,j) .

At the end of this iteration, P (w) = P (S ⇒? w1,m). This calculation
involves applying each production once for each triple of “string positions”
0 < i ≤ k < j ≤ m, so the calculation takes O(|R|m3) time.

3.3. Gibbs distributions. There are many ways to generalize. The
coverage of a context-free grammar may be inadequate, and we may hope,
therefore, to find a workable scheme for placing probabilities on context-
sensitive grammars, or perhaps even more general grammars. Or, it may be
preferable to maintain the structure of a context-free grammar, especially
because of its dynamic programming principle, and instead generalize the
class of probability distributions away from those induced (parameterized)
by production probabilities. But nothing comes for free. Most efforts
to generalize run into nearly intractable computational problems when it
comes time to parse or to estimate parameters.

Many computational linguists have experimented with using Gibbs
distributions, popular in statistical physics, to go beyond production-based
probabilities, while nevertheless preserving the basic context-free structure.
We shall take a brief look at this particular formulation, in order to illus-
trate the various challenges that accompany efforts to generalize the more
standard probabilistic grammars.

3.3.1. Probabilities. The sample space is the same: Ψ is the set
of finite trees, rooted at S, with leaf nodes labeled from elements of T
and interior nodes labeled from elements of N . For convenience we will
stick to Chomsky normal form, and we can therefore assume that every
nonterminal node has either two children labeled from N or a single child
labeled from T . Given a particular context-free grammar G, we will be
interested in measures concentrating on the subset ΨG of Ψ. The sample
space, then, is effectively ΨG rather than Ψ.

Gibbs measures are built from sums of more-or-less simple functions,
known as “potentials” in statistical physics, defined on the sample space.
In linguistics, it is more natural to call these features rather than poten-
tials. Let us suppose, then, that we have identified M linguistically salient
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features f1, . . . , fM , where fk : ΨG → R, through which we will character-
ize the fitness or appropriateness of a structure ψ ∈ ΨG. More specifically,
we will construct a class of probabilities on ΨG which depend on ψ ∈ ΨG

only through f1(ψ), . . . , fM (ψ). Examples of features are the number of
times a particular production occurs, the number of words in the yield,
various measures of subject-verb agreement, and the number of embedded
or independent clauses.

Gibbs distributions have the form

Pθ(ψ) =
1

Z
exp

{

M
∑

i=1

θifi(ψ)

}

(11)

where θ1 . . . , θM are parameters, to be adjusted “by hand” or inferred from
data, θ = (θ1 . . . , θM ), and where Z = Z(θ) (known as the “partition
function”) normalizes so that Pθ(Ψ) = 1. Evidently, we need to assume or

ensure that
∑

ψ∈ΨG
exp{

∑M

1 θifi(ψ)} < ∞. For instance, we had better
require that θ1 < 0 if M = 1 and f1(ψ) = |Y(ψ)| (the number of words in
a sentence), unless of course |ΨG| <∞.

Relation to Probabilistic Context-Free Grammars. The feature
set {f(A→ α;ψ)}A→α∈R represents a particularly important special case:
The Gibbs distribution (11) takes on the form

Pθ(ψ) =
1

Z
exp

{

∑

A→α∈R

θA→αf(A → α;ψ)

}

.(12)

Evidently, we recover probabilistic context-free grammars by taking θA→α

= loge p(A → α), where p is a system of production probabilities consistent
with (9), in which case Z = 1. But is (12) more general? Are there
probabilities on ΨG of this form that are not PCFGs? The answer turns
out to be no, as was shown by [Chi, 1999] and [Abney et al., 1999]: Given
a probability distribution P on ΨG of the form of (12), there always exists
a system of production probabilities p under which P is a PCFG.

One interesting consequence relates to the issue of criticality raised
in §3.2.1. Recall that a system of production probabilities p may define
(through 10) an improper probability P on ΨG: P (ΨG) < 1. In these cases
it is tempting to simply renormalize, P̄ (ψ) = p(ψ)/P (ΨG), but then what
kind of distribution is P̄? It is clear enough that P̄ is Gibbs with feature
set {f(A→ α;ψ)}A→α∈R, so it must also be a PCFG, by the result of Chi
and Abney et al. What are the new production probabilities, p̄(·)?

For each A ∈ N , consider the grammar GA which “starts at A,” i.e.
replace S, the start symbol, by A. If ΨA is the resulting set of tree struc-
tures (rooted at A), then (12) defines a measure PA on ΨA, which will
have a new normalization ZA. Consider now the production A → BC,
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A,B,C ∈ N . Chi’s proof of the equivalence between PCFGs and
Gibbs distributions of the form (12) is constructive:

p(A→ BC) =
ZBZC
ZA

eθA→B C

is, explicitly, the production probability under which P is a PCFG. For a
terminal production, A→ a,

p(A→ a) =
1

ZA
eθA→a .

Consider again example 6, in which S → S S with probability q and
S → a with probability 1 − q. We calculated P (ΨG) = min(1, 1−q

q
), so

renormalize and define

P̄ (ψ) =
P (ψ)

min(1, 1−q
q

)
ψ ∈ ΨG .

Then P̄ = P when q ≤ .5. In any case, P̄ is Gibbs of the form (12), with
θS→S S = loge q, θS→a = loge(1 − q), and ZS = min(1, 1−q

q
). Accordingly,

P̄ is also a PCFG with production probabilities

p̄(S → S S) = q
min(1, 1−q

q
) min(1, 1−q

q
)

min(1, 1−q
q

)
= qmin(1,

1 − q

q
)

and

p̄(S → a) = (1 − q)
1

min(1, 1−q
q

)
.

In particular, p̄ = p when q ≤ .5, but p̄(S → S S) = 1−q and p̄(S → a) = q
when q > .5.

3.3.2. Inference. The feature set {fi}i=1,...,M can accommodate ar-
bitrary linguistic attributes and constraints, and the Gibbs model (11),
therefore, has great promise as an accurate measure of linguistic fitness.
But the model depends critically on the parameters {θi}i=1,...,M , and the
associated estimation problem is, unfortunately, very hard. Indeed, the
problem of unsupervised learning appears to be all but intractable.

Of course if the features are simply production frequencies, then (11)
is just a PCFG, with Z = 1, and the parameters are just log production
probabilities (θA→α = loge p(A → α)) and easy to estimate (see §3.2.2).
More generally, let θ = (θ1, . . . , θM ) and suppose that we observe a sample
ψ1, . . . ψn ∈ ΨG (“supervised learning”). Writing Z as Z(θ), to emphasize
the dependency of the normalizing constant on θ, the likelihood function is
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L = L(θ;ψ1 . . . , ψn) =

n
∏

i=1

1

Z(θ)
exp

{

M
∑

j=1

θjfj(ψi)

}

which leads to the likelihood equations (by setting ∂
∂θj

logL to 0):

Eθ[fj(ψ)] =
1

n

n
∑

i=1

fj(ψi) 1 ≤ j ≤ N(13)

where Eθ is expectation under (11). In general, ΨG is infinite and depend-
ing on the features {fi}i=1,...,M and the choice of θ, various sums (like Z(θ)
and Eθ) could diverge and be infinite. But if these summations converge,
then the likelihood function is concave. Furthermore, unless there is a lin-
ear dependence among {fi}i=1,...,M on {ψi}i=1,...,n, then the likelihood is
in fact strictly concave, and there is a unique solution to (13). (If there is
a linear dependence, then there are infinitely many θ values with the same
likelihood.)

The favorable shape of L(θ;ψ1 . . . , ψn) suggests gradient ascent, and
in fact the θj component of the gradient is proportional to 1

n

∑n
i=1 fj(ψi)−

Eθ[fj(ψ)]. But Eθ[f ] is difficult to compute (to say the least), except
in some very special and largely uninteresting cases. Various efforts to
use Monte Carlo methods to approximate Eθ[f ], or related quantities that
arise in other approaches to estimation, have been made [Abney, 1997]. But
realistic grammars involve hundreds or thousands of features and complex
feature structures, and under such circumstances Monte Carlo methods are
notoriously slow to converge. Needless to say, the important problem of
unsupervised learning, wherein only yields are seen, is even more daunting.

This state of affairs has prompted a number of suggestions in way of
compromise and approximation. One example is the method of pseudolike-
lihood, which we will now discuss.

Pseudolikelihood. If the primary goal is to select good parses, then
perhaps the likelihood function

n
∏

i=1

Pθ(ψi)(14)

asks for too much, or even the wrong thing. It might be more rele-
vant to maximize the likelihood of the observed parses, given the yields

Y(ψ1), . . . ,Y(ψn) [Johnson et al., 1999]:

n
∏

i=1

Pθ(ψi|Y(ψi)) .(15)

One way to compare these criteria is to do some (loose) asymptotics.
Let P (ψ) denote the “true” distribution on ΨG (from which ψ1, . . . , ψn
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are presumably drawn, iid), and in each case (14 and 15) compute the
large-sample-size average of the log likelihood:

1

n
log

n
∏

i=1

Pθ(ψi) =
1

n

n
∑

i=1

logPθ(ψi)

≈
∑

ψ∈ΨG

P (ψ) logPθ(ψ)

=
∑

ψ∈ΨG

P (ψ) logP (ψ) −
∑

ψ∈ΨG

P (ψ) log
P (ψ)

Pθ(ψ)

1

n
log

n
∏

i=1

Pθ(ψi|Y(ψi)) =
1

n

n
∑

i=1

logPθ(ψi|Y(ψi))

≈
∑

w∈T+

P (w)
∑

ψ∈ΨG

s.t. Y(ψ)=w

P (ψ|Y(ψ)) logPθ(ψ|Y(ψ))

=
∑

w∈T+

P (w)
∑

ψ∈ΨG

s.t. Y(ψ)=w

P (ψ|Y(ψ)) log P (ψ|Y(ψ))

−
∑

w∈T+

P (w)
∑

ψ∈ΨG

s.t. Y(ψ)=w

P (ψ|Y(ψ)) log
P (ψ|Y(ψ))

Pθ(ψ|Y(ψ))
.

Therefore, maximizing the likelihood (14) is more or less equivalent to min-
imizing the Kullback-Leibler divergence between P (ψ) and Pθ(ψ), whereas
maximizing the “pseudolikelihood” (15) is more or less equivalent to min-
imizing the Kullback-Leibler divergence between P (ψ|Y(ψ)) and Pθ(ψ|
Y(ψ))—averaged over yields. Perhaps this latter minimization makes more
sense, given the goal of producing good parses.

Maximization of (15) is an instance of Besag’s remarkably effective
pseudolikelihood method [Besag, 1974, Besag, 1975], which is commonly
used for estimating parameters of Gibbs distributions. The computations
involved are generally much easier than what is involved in maximizing
the ordinary likelihood function (14). Take a look at the gradient of the
logarithm of (15): the θj component is proportional to

1

n

n
∑

i=1

fj(ψi) −
1

n

n
∑

i=1

Eθ[fj(ψ)|Y(ψ) = Y(ψi)] .(16)

Compare this to the gradient of the likelihood function, which involves
Eθ[fj(ψ)] instead of 1

n

∑n

i=1 Eθ[fj(ψ)|Y(ψ) = Y(ψi)]. Eθ[fj(ψ)] is essen-
tially intractable, whereas Eθ[fj(ψ)|Y(ψ)] can be computed directly from
the set of parses of the sentence Y(ψ). (In practice there is often massive
ambiguity, and the number of parses may be too large to feasibly consider.
Such cases require some form of pruning or approximation.)
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Thus gradient ascent of the pseudolikelihood function is (at least ap-
proximately) computationally feasible. This is particularly useful since the
Hessian of the logarithm of the pseudolikelihood function is non-positive,
and therefore there are no local maxima. What’s more, under mild condi-
tions pseudolikelihood estimators (i.e. maximizers of (15)) are consistent
[Chi, 1998].

4. Generalizations and other directions. There are a large num-
ber of extensions and applications of the grammatical tools just outlined.
Treebank corpora, which consist of the hand-constructed parses of tens of
thousands of sentences, are an extremely important resource for develop-
ing stochastic grammars [Marcus et al., 1993]. For example, the parses in
a treebank can be used to generate, more or less automatically, a PCFG.
Productions can be simply “read off” of the parse trees, and production
probabilities can be estimated from relative frequencies, as explained in
§3.1.2. Such PCFGs typically have on the order of 50 nonterminals and
15,000 productions. While the average number of parses per sentence is
astronomical (we estimate greater than 1060), the dynamic programming
methods described in §3.2.3 are quite tractable, involving perhaps only
hundreds of thousands of operations.

PCFGs derived from treebanks are moderately effective in parsing nat-
ural language [Charniak, 1996]. But the actual probabilities generated by
these models (e.g. the probability of a given sentence) are considerably
worse than those generated by other much simpler kinds of models, such
as trigram models. This is presumably because these PCFGs ignore lexi-
cal dependencies between pairs or triples of words. For example, a typical
treebank PCFG might contain the productions VP → V NP,V → eat and
NP → pizza, in order to generate the string eat pizza. But since noun
phrases such as airplanes are presumably also generated by productions
such as NP → airplanes, this grammar also generates unlikely strings such
as eat airplanes.

One way of avoiding this difficulty is to lexicalize the grammar, i.e., to
“split” the nonterminals so that they encode the “head” word of the phrase
that they rewrite to. In the previous example, the corresponding lexicalized
productions are VPeat → Veat NPpizza,Veat → eat and NPpizza → pizza.
This permits the grammar to capture some of the lexical selectional pref-
erences of verbs and other heads of phrases for specific head words. This
technique of splitting the nonterminals is very general, and can be used to
encode other kinds of nonlocal dependencies as well [Gazdar et al., 1985].
In fact, the state of the art probabilistic parsers can be regarded as PCFG
parsers operating with very large, highly structured, nonterminals. Of
course, this nonterminal splitting dramatically increases the number of
nonterminals N and the number of productions R in the grammar, and
this complicates both the computational problem [Eisner and Satta, 1999]
and, more seriously, inference. While it is straight-forward to lexicalize
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the productions of a context-free grammar, many or even most produc-
tions in the resulting grammar will not actually appear even in a large
treebank. Developing methods for accurately estimating the probability
of such productions by somehow exploiting the structure of the lexically
split nonterminals is a central theme of much of the research in statistical
parsing [Collins, 1996, Charniak, 1997].

While most current statistical parsers are elaborations of the PCFG
approach just specified, there are a number of alternative approaches that
are attracting interest. Because some natural languages are not context-
free languages (as mentioned earlier), most linguistic theories of syntax
incorporate context-sensitivity in some form or other. That is, according
to these theories the set of trees corresponding to the sentences of a hu-
man language is not necessarily generated by a context-free grammar, and
therefore the PCFG methods described above cannot be used to define a
probability distribution over such sets of trees. One alternative is to employ
the more general Gibbs models, discussed above in §3.3 (see for example
[Abney, 1997]). Currently, approaches that apply Gibbs models build on
previously existing “unification grammars” [Johnson et al., 1999], but this
may not be optimal, as these grammars were initially designed to be used
non-stochastically.
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